
13th workshop

and

14th C5 Graph Theory Workshop

"Cycles, Colourings, Cliques, Claws and Closures"



SELECTED PROBLEMS

http://www.mathe.tu-freiberg.de/inst/theomath/rindex.php?seite=rathen



Colourings

1 Minimum order of k−chromatic

Kr+1−free graphs

(Anja Kohl)
Let nr(k) denote the smallest possible number of vertices of a graph G with chro-
matic number χ(G) = k and clique number ω(G) 6 r. Obviously, nr(k) = k for
r > k. So we are only interested in the case r 6 k− 1.

It is known that n2(k) has order of magnitude k2 · logk.
Question 1.1. What order of magnitude has nr(k) for r > 3?
For k 6 3 + r all exact values for nr(k) are known, in particular: n2(4) = 11 [1],
n2(5) = 22, n3(5) = 11 [2] and n3(6) = 16 [4].
Problem 1.1. Determine n2(6), n3(7), and n4(8).
(known: 30 6 n2(6) 6 45, 20 6 n3(7) 6 31, 17 6 n4(8) 6 22)

Known ([3]): For k sufficient large and r > k− 11, we have the following results:
• nk−i(k) = k+ 2i for k > 3i, i = 1, 2

• nk−i(k) = k+ 2i for k > 2i+ 1, i = 3, 4, 5, 6

• nk−i(k) = k+ 2i− 1 for k > 2i, i = 7, 8

• nk−i(k) = k+ 2i− 2 for k > 2i− 1, i = 9

• nk−i(k) = k+ 2i− 3 for k > 2i− 2, i = 10, 11

• nk−i(k) = k+ 2i− 4 for k > 2i− 3, i = 13.
Problem 1.2. Determine nk−12(k) for k > 22.
(known for k > 22: k+ 20 6 nk−12(k) 6 k+ 21).
The value of nk−12(k) for k > 22 depends on the Ramsey number R(10, 3). It is
known that 40 6 R(10, 3) 6 43. If R(10, 3) ∈ {42, 43}, then nk−12(k) = k+ 20 for
k > 22, otherwise nk−12(k) = k+ 21.

References:
[1] V. Chvátal, The minimality of the mycielski graph

Graphs and Combinatorics, Springer-Verlag, Berlin and New York, (1974), 243-246.

[2] T. R. Jensen, G. F. Royle, Small graphs with chromatic number 5: a computer search
J. Graph Theory 19 (1995), 107-116.

[3] A. Kohl, On k−chromatic Kr+1−free graphs: I. Determining the minimum order
manuscript (2010), submitted to Journal of Graph Theory.

[4] private communication to S. Radziszowski.
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2 Chromatic number of graphs with

two odd cycle lengths

(Stephan Matos Camacho)
Let Co(G) denote the set of odd cycle lengths contained by a graph G. Gyárfás
([2]) proved that G is colourable with at most 2k+ 1 colours if |Co(G)| = k, unless
G contains a K2k+2. In [1] we observed

Theorem 2.1. If G only contains two consecutive odd lengths greater than 3, say
Co(G) = {2m+ i : i ∈ {−1, 1},m > 3}, then G is 4-colourable.

Question 2.1. Let G be a 2-connected graph with Co(G) = {2m + i : i ∈
{−1, 1},m > 3} and minimal degree at least 3. Is χ(G) < 4?

In [5] a first part of the question could be answered:

Theorem 2.2. IfG contains only odd cycles of length 5 and 7, thenG is 3-colourable.

The proof is based on known results on the structure of k-critical graphs due to
Dirac and Toft. The rest of the questions still remains open.

Question 2.2. LetG be a 2−connected graph with Co(G) = {2m+1, 2n+1 : m >

n+ 1,n > 2} and minimal degree at least 3. Is χ(G) < 5?

References:
[1] S. Matos Camacho, Colourings of graph with prescribed cycle lengths

diploma thesis (2006).

[2] A. Gyárfás, Graphs with k odd cycle lengths
Discrete Math. 103 (1992), 41-48.

[3] S. Matos Camacho, I. Schiermeyer, Colourings of graphs with two consecutive odd cycle lengths
Disc. Math. 309 (15), 4916–4919.

[4] H.-J. Voss, Cycles and Bridges in Graphs
Deutscher Verlag der Wissenschaften, Berlin (1991).

[5] T. Kaiser, O. Rucký and R. Škrekovski, Graphs with odd cycle lengths 5 and 7 are 3-colorable
manuscript (2008).

3



Colourings

3 b-colourings of graphs

(Mais Alkhateeb, Anja Kohl)
Let G be a simple and undirected graph of order n. A b-colouring of G is a proper
vertex colouring such that there is a vertex in each colour class, which is adjacent
to at least one vertex in every other colour class. Such a vertex is called a colour-
dominating vertex. The b-chromatic number of a graph G, denoted by b(G), is the
largest k such that there is a b-colouring of G by k colours.

Irving and Manlove ([3]) introduced the concept of b-colouring and proved that
determining the b−chromatic number is NP-hard in general and polynomial for
trees. Determining b(G) is NP-hard even for bipartite graphs ([4]). Moreover, [3]
states that b(G) 6 m(G) for every graph G with m-degree m(G) := max{1 6 i 6
n : d(vi) > i−1} where the vertices v1, v2, ..., vn of G are ordered in nonincreasing
order of their degrees.

Problem 3.1. Characterization of graphs withm(G) − 1 6 b(G) 6 m(G).

It is known, that this inequality holds for trees ([3]), and for graphs whose blocks
are cliques of size 2 or 3.

Another interesting problem is to characterize those graphs G satisfying b(G) =

∆(G) + 1. If this problem is limited to regular graphs, Kratochvı́l et al. ([4]) proved
that for every d-regular graph with at least d4 vertices, b(G) = d + 1. Moreover,
it is known that for every graph G with girth at least 6, b(G) > δ(G), and if this
graph is d-regular then b(G) = d+ 1.

Conjecture 3.1. ([4] ) ] For every d-regular graphGwith girth at least 5, b(G) = d+1.

A graph G is called b-continuous if it has a b-colouring by k colours for all k
satisfying χ(G) 6 k 6 b(G). There exist graphs which are not b-continuous, e.g.
the cube Q3, every (r − 1)-factor of the complete bipartite graph Kr,r, r > 4 ([3]),
and some other bipartite graphs ([2]). Since all non-b-continuous graphs that are
known so far contain a claw as an induced subgraph, we ask:

Question 3.1. Does there exist a claw-free graph that is not b-continuous?

We conjecture that there is no such graph. This is reason to pose the following
conjecture:

Conjecture 3.2. Line graphs are b-continuous.
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Recently we could verify that graphs G with minimum degree δ(G) > n − 3 are
b-continuous ([1]). Moreover, there exist non-b-continuous graphs G of order n
and minimum degree δ(G) = n− 5. So we ask:

Question 3.2. Is every graph G with minimum degree δ(G) = n−4 b-continuous?

References:
[1] M. Alkhateeb, A. Kohl, "The b−chromatic number of graphs with clique number or minimum degree close to its

order"
manuscript (2010), submitted to Discussiones Mathematicae Graph Theory.

[2] M. Alkhateeb, A. Kohl, On the b−chromatic number of bipartite graphs
in preparation.

[3] R.W. Irving, D.F. Manlove, The b−chromatic number of a graph
Discrete Appl. Math 91 (1-3)(1999), 127-141.

[4] J. Kratochvı́l, Zs. Tuza, M. Voigt, On the b−chromatic number of graphs
WG 2002, LNCS 2573 (2002), 310-320.
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4 On the cyclic chromatic number of

3-connected plane graphs

(Mirko Horňák)
The cyclic chromatic number of a plane graph G, in symbol χc(G), is a minimum
number of colours in such a vertex colouring ofG that distinct vertices incident with
a common face receive distinct colours. If G is 2-connected, then χc(G) > ∆∗(G),
where ∆∗(G) is the maximum face degree of G.
On the other hand, no 3-connected plane graphG is known withχc(G) > ∆

∗(G)+2.
Plummer and Toft ([7]) proved that χc(G) 6 ∆∗(G) + 9 and conjectured (PTC) that
χc(G) 6 ∆∗(G) + 2 for any 3-connected plane graph G.
Let PTC(d) denote PTC restricted to 3-connected plane graphs G with ∆∗(G) = d.
It is known that PTC(d) is true for d = 3 (Four Colour Theorem), d = 4 (Borodin
[1]), d ∈ {18, . . . , 23} (Horňák and Zlámalová [6]) and d > 24 (Horňák and Jendrol’
[5]). For ∆∗(G) > 60 Enomoto et al. ([4]) obtained the best possible inequality:
χc(G) 6 ∆∗(G) + 1 (graphs of pyramids show that the bound ∆∗(G) + 1 cannot be
improved).
The best general upper bound known so far is due to Enomoto and Horňák ([3]),
namely χc(G) 6 ∆∗(G) + 5.

Problem 4.1. Prove PTC(d) for some d ∈ {5, . . . , 17}.

References:
[1] O. V. Borodin, Solution of Ringel’s problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs

(in Russian)
Met. Diskr. Anal. 41 (1984), 12-26.

[2] O. V. Borodin, D. P. Sanders, Y. Zhao, On cyclic colorings and their generalizations
Discrete Math. 203 (1999), 23-40.

[3] H. Enomoto, M. Horňák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs
J. Graph Theory 62 (2009), 1-25.

[4] H. Enomoto, Horňák and S. Jendrol’, Cyclic chromatic number of 3-connected plane graphs
SIAM J. Discrete Math. 14 (2001), 121-137.

[5] M. Horňák and S. Jendrol’, On a conjecture by Plummer and Toft
J. Graph Theory 30 (1999), 177-189.

[6] M. Horňák, J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft
Discrete Math. 310 (2010), 442-452.

[7] M. D. Plummer and B. Toft, Cyclic coloration of 3-polytopes
J. Graph Theory 11 (1987), 507-515.
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5 The circular total chromatic number

(Andrea Hackmann, Arnfried Kemnitz)
A k−total colouring of a simple graph G is an assignment of k colours to the ver-
tices and edges of G such that the neighbored elements - two adjacent vertices or
two adjacent edges or a vertex incident to an edge - are coloured differently. The
minimum number k for which a graph G admits a k−total colouring is the total
chromatic number χ ′′(G) of G.

If k and d are positive integers with k > 2d then a (k,d)−total colouring of a
graph G is an assignment c of colours {0, 1, . . . , k − 1} to the vertices and edges
of G such that d 6 |c(xi) − c(xj)| 6 k − d whenever two elements xi and xj are
neighbored. The circular total chromatic number χ ′′c (G) of G is defined as the
infimum of fractions k

d
for all (k,d)−total colourings of G:

χ ′′c (G) = inf
{
k

d
: G has a (k,d) − total colouring.

}

Obviously, a (k, 1)−total colouring is a k−total colouring of G which implies that
χ ′′c (G) 6 χ

′′(G). For cyclesCp it holds χ ′′c (C3k+1) = 3+ 1
k

and χ ′′c (C3k+2) = 3+ 1
2k+1

whereas χ ′′(C3k+1) = χ
′′(C3k+2) = 4.

For example, for complete graphs and several classes of complete multipartite
graphs the total chromatic number and the circular total chromatic number coin-
cide.

Problem 5.1. Determine classes of graphs G aside from cycles such that

χ ′′c (G) < χ
′′(G).
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6 Choice number of cartesian products

(Mieczysław Borowiecki, Stanislav Jendrol’)
Let ch(G) denote the choice number of G and let G×H be the Cartesian Product
of graphs G and H.
Galvin (1995) proved that ch(Kn×Kn) = n and solved in this way the old Dinitz’s
conjecture. (See Diestel’s book where the solution is presented as a result on the
edge list colouring of bipartite multigraphs.)

Let G and H be graphs. Clearly,

max{ch(G), ch(H)} 6 ch(G×H).

Question 6.1. Does there is an absolute constant c such that

ch(G×H) 6 max{ch(G), ch(H)}+ c?

Question 6.2. If the answer is YES, then how big is c? Is c = 1?

Comment: In [1] we have shown that the above conjecture is not true in a general
case.
However, we suspect that the following two conjectures hold:

Conjecture 6.1. There exists a constant A such that the following holds for every
pair of graphs G and H:

ch(G×H) 6 A(ch(G) + ch(H)).

Conjecture 6.2. LetG andH be two graphs with maximum degree at most ∆. Then

ch(G×H) 6 ∆+ o(∆).

References:
[1] M. Borowiecki, S. Jendrol’, D. Král and J. Miškuf, List Coloring of Cartesian Products of Graphs

Discrete Mathematics 306 (2006), 1955-1958.
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7 Colouring vertices of plane graphs under

restrictions given by faces

(Stanislav Jendrol’)
Consider a vertex colouring of a connected plane graph G. A colour c is used k
times by a face α of G if it appears k times along the facial walk of α. Two natural
problems arise.

1. A vertex colouring ϕ is a weak parity vertex colouring of a connected plane
graph G with respect to its faces if each face of G uses at least one colour an odd
number of times. Problem is to determine the minimum number χw(G) of colours
used in a wpv colouring of G.

In [1] it is proved that χw(G) 6 4 for every connected plane graphGwith minimum
degree at least 3. We strongly believe that the following holds.

Conjecture 7.1. Let G be a connected plane graph of minimum face degree at least
3. Then

χw(G) 6 3.

The Conjecture is true for 2-connected cubic plane graphs, see [1].

2. A vertex colouring ϕ is a strong parity vertex colouring of a 2-connected plane
graph G with respect to the faces of G if each face of G that uses a colour then it
uses an odd number of times. Problem is to find the minimum number χs(G) of
colours used in an spv colouring of G. We believe that

Conjecture 7.2. There is a constant k such that for every 2-connected plane graph
G

χs(G) 6 k.

We do not know any 2-connected plane graph H with χs(H) > 7. Hence, we
believe that k = 6 in the above conjecture.

References:
[1] J. Czap, S. Jendrol’, Colouring vertices of plane graphs under restrictions given by faces, Discussiones Math.

Graph Theory (submitted).
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8 On total acyclic colouring of planar garphs

Mieczysław Borowiecki, Izak Broere, Peter Mihók
An additive hereditary property of graphs is a class of simple graphs which is closed
under unions, subgraphs and isomorphism. Let P and Q be additive hereditary
properties of graphs. A (P,Q)-total colouring of a simple graph G is a colouring
of the vertices V(G) and edges E(G) of G such that for each colour i the vertices
coloured by i induce a subgraph of property P, the edges coloured by j induce
a subgraph of property Q and moreover the adjacent vertices and edges obtain
different colours. The minimum number of colours of a total (P,Q)-colouring of G
is the total (P,Q)-chromatic number and is denoted by χ ′′P,Q(G).
We will present basic results and some Problems, and Conjectures on total (P,Q)-
colourings of planar graphs where the class P and Q is the class of edgeless and
acyclic graphs, respectively.
An acyclic k-colouring of a graph G is a proper vertex k-colouring of G satisfying
the subgraph induced by every pair of colour classes has no cycle.
The minimum k such thatG has an acyclic k-colouring is called the acyclic chromatic
number of G, denoted by χa(G).

Total acyclic 3-colouring

Theorem 8.1. If a graph G is properly acyclic vertex k-colourable, then G is totally
(O,D1)-colourable with k colours when k is odd and with k+ 1 colours when k is
even.

Let G be a graph. Then χ ′′O,D1
(G) = 1 if and only if G is an edgeless graph with at

least one vertex. If G contains at least one edge, then χ ′′O,D1
(G) > 3. Thus there is

no graph G with χ ′′O,D1
(G) = 2.

By Theorem 8.1 we have two Corollaries.

Corollary 1. Let G be a forest with at least one edge. Then χ ′′O,D1
(G) = 3 if and only

if χa(G) = 2.

Corollary 2. Let G be a graph with at least one cycle. Then χ ′′O,D1
(G) = 3 if and only

if χa(G) = 3.

Planar graphs

Theorem 8.2. ([1]) Every planar graph has an acyclic 5-colouring.

Theorems 8.1 and 8.2 imply the following result.

Corollary 3. If G is a planar graph, then χ ′′O,D1
(G) 6 5.
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This upper bound also holds for larger class of graphs:

Theorem 8.3. If G is K5-minor free, then χ ′′O,D1
(G) 6 5.

Theorem 8.4. ([4]) If G is a planar bipartite graph, then χa(G) 6 5 and the bound
is sharp.

Although planar graphs and bipartite planar graphs have the same upper bound for
the acyclic chromatic number, but for the graphs from the second class, we have
the following theorem.

Theorem 8.5. If G is a planar bipartite graph, then χ ′′O,D1
(G) 6 4 and the bound is

sharp.

Consider now the class of 3-colourable planar graphs. Apparently for these graphs
we have the same upper bound, namely:

Theorem 8.6. IfG is a 3-colourable planar graph, then χ ′′O,D1
(G) 6 4 and the bound

is sharp.

Since for K5-minor free graphs we have the same upper bound as for planar graphs
it seems that Four Colour Theorem can be strengthened to the following one:

Conjecture 8.1. If G is a planar graph, then χ ′′O,D1
(G) 6 4.

We recently proved the following Conjecture:

Conjecture 8.2. ([3]) If G is a planar graph, then χ ′′D1,D1
(G) 6 4.

We conclude with the following Problem:

Problem 8.1. Characterize planar bipartite graphs with χ ′′O,D1
(G) = 4 for which

χa(G) = 4 (χa(G) = 5).

References:
• [1] O.V. Borodin, On acyclic colouring of planar graphs

Discrete Math. 25 (1979) 211-236.

• [2] M. Borowiecki, I. Broere and P. Mihók, On total acyclic colouring of planar graphs
(manuscript).

• [3] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colourings of graphs
(submitted).

• [4] A.V. Kostochka and L.S. Mel’nikov, A note to the paper of Grunbaum on acyclic colorings
Discrete Math. 14 (1976) 403-406.
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9 List colourings of integer distance graphs

(Arnfried Kemnitz)
LetD be a subset of the positive integersN. The integer distance graph G(Z,D) =

G(D) is defined as the graph with the set of integers as vertex set, V(G(D)) = Z,
and edge set consisting of all pairs uv whose distance |u − v| is an element of the
so-called distance set D.

General bounds for the chromatic number of integer distance graphs are

2 6 χ(G(D)) 6 |D|+ 1.

Voigt ([4]) and Zhu ([5]) determined χ(G(D)) if |D| = 3 :

If D = {x,y, z} consists of integers whose greatest common divisor equals 1, then
χ(D) = 4 if and only if D = {1, 2, 3n} or D = {x,y, x + y} and x . y (mod 3). If
x,y, z are odd then χ(D) = 2. For all other 3−element distance sets D it holds
χ(D) = 3.

General bounds for the list chromatic number (choice number) of integer distance
graphs are χ(D) 6 ch(D) 6 |D|+ 1 (Kemnitz, Marangio 2001).

Question 9.1. Does there exist a 3−element distance set such that ch(D) < 4?

References:
[1] A. Hackmann, A. Kemnitz, Circular total colorings of graphs

Congr. Numer. 158 (2002), 43-50.

[2] A. Hackmann, A. Kemnitz, Circular total colorings of cubic circulant graphs
J. Combin. Math. Combin. Comput. 49 (2004), 65-72.

[3] A. Kemnitz, M. Marangio, Edge colorings and total colorings of integer distance graphs
Discussiones Mathematicae Graph Theory 22 (2002), 149-158.

[4] M. Voigt, Colouring of distance graphs
Ars Combinatoria 52 (1999), 3-12.

[5] X. Zhu, Distance graphs on the real line
manuscript, 1996.
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10 [1, 1, t]-Colourings of Complete Graphs

Arnfried Kemnitz, Massimiliano Marangio
Given non-negative integers r, s, and t, an [r, s, t]-colouring of a graph G =

(V(G),E(G)) is a mapping c from V(G) ∪ E(G) to the colour set {0, 1, . . . , k − 1}
such that |c(v) − c(v ′)| > r for every two adjacent vertices v, v ′, |c(e) − c(e ′)| > s

for every two adjacent edges e, e ′, and |c(v) − c(e)| > t for all pairs of incident
vertices and edges, respectively. The [r, s, t]-chromatic number χr,s,t(G) of G is
defined to be the minimum k such that G admits an [r, s, t]-colouring.

This is an obvious generalization of all classical graph colourings since c is a ver-
tex colouring if r = 1, s = t = 0, an edge colouring if s = 1, r = t = 0, and
a total colouring if r = s = t = 1, respectively. Therefore, χ1,0,0(G) = χ(G),
χ0,1,0(G) = χ ′(G), and χ1,1,1(G) = χ ′′(G) where χ(G) is the chromatic number,
χ ′(G) the chromatic index, and χ ′′(G) the total chromatic number of the graph G.

For complete graphs Kn on n vertices it holds

χ1,1,1(Kn) = χ
′′(Kn) =

{
n if n odd,
n+ 1 if n even

and we proved (see [1])

χ1,1,2(Kn) =


n if n = 1,
n+ 2 if n > 3 odd, n = 2, n = 6, or n = 8,
n+ 3 if n = 4 or n > 10 even.

Problem 10.1. Determine χ1,1,t(Kn) for 3 6 t 6 2(n− 1).

Note that χ1,1,t(Kn) = 2(n− 1) + t if t > 2(n− 1) (see [2]).

References:
[1] A. Kemnitz, J. Lehmann, M. Marangio, [1, 1, 2]-Colorings of Complete Graphs

submitted.

[2] A. Kemnitz, M. Marangio, [r, s, t]-Colorings of Graphs
Discrete Mathematics 307 (2007), 199–207.
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11 Neighbours distinguishing index of

planar graphs

(Keith Edwards, Mirko Horňák, Mariusz Woźniak)
Let G be a finite simple graph with no component K2. Let C be a finite set of
colours and let ϕ : E(G)→ C be a proper edge colouring of G. The colour set of a
vertex v ∈ V(G) with respect to ϕ, in symbols Sϕ(v), is the set of colours of edges
incident with v. The colouring ϕ is neighbours distinguishing if Sϕ(x) , Sϕ(y) for
any xy ∈ E(G). For example, any neighbour-distinguishing colouring of C5 uses
necessarily 5 colours.
The neighbours distinguishing index of the graph Gis the smallest number ndi(G)
of colours in a neighbour-distinguishing colouring of G. Neighbours distinguishing
index has been introduced in [7], where the authors have conjectured that ndi(G) 6
∆(G)+2 for any connected graphG nonisomorphic to C5 on at least three vertices
(Neighbour-Distinguishing Conjecture = NDC). NDC was confirmed in [1] for
cubic graphs and for bipartite graphs, in [6] for graphs with maximum degree at
most 3, in [2] for planar graphs with girth at least 6 and in [5] for planar graphs
with maximum degree at least 12. In [3] it was proved that ndi(G) 6 ∆(G) + 1
for any planar bipartite graph G with ∆(G) > 12. Hatami in [4] showed that
ndi(G) 6 ∆(G) + 300 provided that ∆(G) > 1020.

Problem 11.1. Find the minimum integer ∆ > 4 such that ndi(G) 6 ∆(G) + 1 for
any plane bipartite graph G with ∆(G) > ∆.

Problem 11.2. Prove or disprove NDC for planar graphs G with ∆(G) = ∆ for (at
least some) ∆ ∈ {4, . . . , 11}.

References:
[1] P. N. Balister, E. Győri, J. Lehel and R. H. Schelp, Adjacent vertex distinguishing edge-colorings

SIAM J. Disc. Math. 21 (2007), 237-250.

[3] Y. Bu, K.W. Lih and W. Wang, Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six
submitted.

[3] K. Edwards, M. Horňák and M. Woźniak, On the neighbour-distinguishing index of a graph
Graphs Combin. 22 (2006), 341-350.

[4] H. Hatami, ∆+ 300 is a bound on the adjacent vertex distinguishing edge chromatic number
J. Comb. Theory Ser. B 95 (2005), 246-256.

[5] M. Horňák, On neighbour-distinguishing index of planar graphs
manuscript.

[6] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree
J. Comb. Optim. 19 (2010), 471-485.

[7] Z. Zhang, L. Liu, and J. Wang, Adjacent strong edge coloring of graph
Appl. Math. Lett. 15 (2002), 623-626.

14



Colourings

12 Edge-distinguishing index of a sum of cycles

(Rafał Kalinowski, Mariusz Woźniak)
A neighbourhood N(e) of an edge e of a graph G = (V ,E) is a subgraph of
G induced by e and all edges adjacent to e. A colouring c : E → S is called
edge-distinguishing if, for any two distinct edges e, e ′, there does not exist an
isomorphismϕ ofN(e) ontoN(e ′) preserving colours of c, and such thatϕ(e) = e ′.
An edge-distinguishing index χ ′e(G) of a graphG is the minimum number of colours
in a proper edge-distinguishing colouring c : E→ S.
If G is a cycle Cn of length n, then it is easy to see that

χ ′e(Cn) > γn := min{ k |
1
2
k2(k− 1) > n }.

Theorem 12.1.

χ ′e(Cn) =

{
γn + 1 if n = 1

2k
2(k− 1) − 1 or n = 4,

γn otherwise.

Problem 12.1. Let G be a disjoint sum of cycles with the total sum of lengths equal
to n. Evaluate χ ′e(G).
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13 Rainbow connection

(Ingo Schiermeyer)
An edge coloured graph is called rainbow connected if any two vertices are con-
nected by a path whose edges have different colours. The rainbow connection
number rc(G) is the smallest number of colours that are needed in order to make
G rainbow connected. It is known that

1 6 rc(G) 6 n− 1.

Problem 13.1. For every k > 2 find a minimal constant ck with 0 < ck 6 1 such
that rc(G) 6 ck · n for all graphs G with minimum degree δ(G) > k. Is it true that

ck =
3

k+ 1
for all k > 2?

This is true for k = 2, 3 (c2 = 1, c3 = 3
4).

14 Saturated rainbow edge colouring of

cube graphs

(Heiko Harborth, Arnfried Kemnitz)
Let f(n,k) denote the minimum number of colours for the edges of the cube graph
Qn such that for k < n no rainbow Qk occurs (the edges of a rainbow Qk have
pairwise different colours), however, for every edge with a colour used at least
twice it follows that a new colour for this edge induces a rainbow Qk.
For k = 3 it is known f(3, 3) = 11, f(4, 3) = 24, and f(5, 3) = 20.

1. Determine f(6, 3).

2. Determine the smallest n > 3 such that f(n, 3) = 11.
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15 Tightness of Bondy’s Theorem

(Arnfried Kemnitz)
Bondy([1]) proved in 1980 that a k-connected graph G of order n > 3 is hamilto-
nian if the minimum degree sum σk+1(G) of all (k+1)-sets of independent vertices
is at least 1

2((k+1)(n−1)+1) which generalizes the sufficient conditions of Dirac
(k = 0) and Ore (k = 1).

Bondy’s bound is tight for k = 1 and all n since for G � (Kn−2 ∪ K1) + K1 it holds
that σ2(G) = d1

2(2(n− 1) + 1)e− 1 = n− 1 but G is not hamiltonian.

The bound is also tight for all k and odd n since the graph G � Kn−1
2
+ n+1

2 K1 fulfills
σk+1(G) = d1

2((k+ 1)(n− 1) + 1)e− 1 but is not hamiltonian.

Question: Is Bondy’s bound also tight if n is even?

Note that for k = 2 and n = 8 the bound σ3(G) > 11 is not tight since all 927
non-hamiltonian 2-connected graphs G of order 8 fulfill σ3(G) 6 9.
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16 Every locally connected graph is

weakly pancyclic

(Zdenek Ryjáček)
Let G be a finite simple undirected graph and let g(G) and c(G) be the girth and
the circumference of G (i.e. the length of a shortest cycle of G and the length of a
longest cycle of G), respectively. We say that G is weakly pancyclic if G contains
cycles of all lengths ` for g(G) 6 ` 6 c(G). The graph G is locally connected if the
neighborhood of every vertex of G induces a connected graph.

Conjecture 16.1. ([8]) Every connected locally connected graph is weakly pancyclic.

Comments. The concept of locally connected graphs was introduced by Char-
trand and Pippert ([3]). More information about weakly pancyclic graphs appears
in [2], for example.

The conjecture is based on a result by Clark ([4]), who proved that every connected,
locally connected graph is vertex pancyclic (having cycles of all lengths from 3 to
|V(G)| through every vertex). Without the claw-free assumption, it is easy to con-
struct locally connected graphs that are nonhamiltonian. Nevertheless, all known
examples are weakly pancyclic; and indeed [4] proved the conjecture for claw-free
graphs.

In a chordal graph, every block is locally connected, and for every cycle of length at
least 4 there is a cycle with length one less that is obtained by skipping one vertex.
Thus the conjecture holds for chordal graphs.

It is easy to show that the square of any graph is locally connected. (The square
adds edges making vertices at distance 2 in the original graph adjacent.) Fleischner
([5], Theorem 6) proved that the square of every graph is weakly pancyclic, thus
verifying the conjecture for squares of graphs.

The lexicographical product of graphs is another way to obtain a locally connected
graph. Kaiser and Kriesell ([6]) recently proved that the lexicographical product
G[H] is weakly pancyclic provided G is a connected graph and H is an arbitrary
graph with at least one edge.

Kriesell ([7]) verified the conjecture for graphs with maximum degree at most 4.
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Finally, planar triangulations are locally connected. Balister ([1]) proved the con-
jecture for this class as follows. Let C be a cycle in a planar triangulation G. By
induction on the number of faces inside, we prove that the interior (with boundary)
contains cycles of all shorter lengths. If some face inside has two edges on C,
then using the third edge yields a cycle C ′ with length one less and fewer faces
inside. Otherwise, there is a face with one edge on C and the third vertex inside.
Detouring from C to include this vertex forms a longer cycle C ′, but again it has
fewer regions inside and the induction hypothesis applies.
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17 Dominating cycles and hamiltonian prisms

(Zdenek Ryjáček)
The prism over a graph G, denoted G�K2, is the Cartesian product of G and K2. It
consists of two disjoint copies of G and a perfect matching connecting a vertex in
one copy of G to its “clone" in the other copy.

A graph G is hamiltonian if it has a hamiltonian cycle and traceable if it has a
hamiltonian path. Define a k-walk in a graph to be a spanning closed walk in which
every vertex is visited at most k times.

The following implications are easy to verify:

G is hamiltonian⇒ G is traceable⇒ G�K2 is hamiltonian
⇒ G has a 2-walk.

Thus the question whether G�K2 is hamiltonian is “sandwiched” between hamil-
tonicity and having a 2-walk. Specifically, the property of having a hamiltonian
prism can be considered as a “relaxation" of hamiltonicity. More information about
prism-hamiltonicity of a graph can be found e.g. in [1] and [2].

A dominating cycle in a graph G is a cycle C such that every edge of G has at least
one vertex on C, i.e. such that the graph G−C is edgeless. Clearly, a hamiltonian
cycle is dominating, and hence the property of having a dominating cycle can be
considered as another relaxation of hamiltonicity.

There is a natural question whether there is any relation between these two prop-
erties.

Example 17.1. Let H be any 2-connected cubic nonhamiltonian graph, and let G
be obtained from H by replacing every vertex of H with a triangle (such a G is
sometimes called the inflation of H). Then G is a 2-connected line graph and
these are known [2] to be prism-hamiltonian. On the other hand, since H is
nonhamiltonian, any cycle in G has to miss at least one “new" triangle and hence G
has no dominating cycle. Thus, there are “many" graphs showing that hamiltonian
prism does not imply having a dominating cycle.

Example 17.2. The graph in the figure below shows that also the existence of a
dominating cycle does not imply having hamiltonian prism.
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However, all such known examples are of low toughness. This motivates the
following question.

Conjecture 17.1. Let G be a 1-tough graph having a dominating cycle. Then G has
hamiltonian prism.

Comments. Recall that G is 1-tough if, for any S ⊂ V(G), the graph G− S has at
most |S| components.

Suppose that G has a dominating cycle C of even length. Set M = V(G) \ V(C)

and N = {x ∈ V(C)| x has a neighbor in M}. Then the graph induced by M ∪ N
has a matching containing all vertices from M (this follows by the toughness as-
sumption and by the Hall’s theorem). Using this matching, it is easy to construct
a hamiltonian cycle in G�K2.

The difficult case is when all dominating cycles in G are of odd length.
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18 Nonpancylic claw-free graphs with

complete closure

(Zdenek Ryjáček, Richard Schelp)
It is known that a claw-free graph G is hamiltonian if and only if its closure cl(G)
is hamiltonian. On the other hand, there are nonpancyclic graphs with pancyclic
closure [1]. The graph in the figure below is an example of such a nonpancyclic
graph with complete (and hence pancyclic) closure.

Problem 18.1. Determine the maximum number of cycle lengths that can be miss-
ing in a claw-free graph on n vertices with complete closure.

It is easy to see that a claw-free graph with complete closure on at least 4 vertices
can miss neither a C3 nor a C4. The main result of [2] shows that such a graph
G cannot be missing a cycle of length n − 1; however, the proof of this result is
difficult and cannot be iterated.

The following was conjectured in [2].

Conjecture 18.1. Let c1, c2 be fixed constants. Then for large n, any claw-free graph
G of order nwhose closure is complete contains cyclesCi for all i, where 3 6 i 6 c1
and n− c2 6 i 6 n.

Recently, counterexamples to the first part of the Conjecture 18.1 have been found
(see [3]), all these counterexamples have connectivity κ 6 5. We believe that the
second part of Conjecture 18.1 is true, and that such a construction as shown in
[3] is possible only for connectivity κ 6 5. Thus, we conjecture the following.

Conjecture 18.2. Let c be a fixed constand. then for large n, any claw-free graph G
of order n, whose closure is complete, contains cycles Ci for all i,n− c 6 i 6 n.

Conjecture 18.3. Every 6-connected claw-free graph with complete closure is pan-
cyclic.
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19 Cycles containing k−connected vertex

subsets and independent edge subsets

(Jochen Harant)
Given k ∈ N, a graph G, and X ⊆ V(G). X is k-connected in G if G − S has a
component containing X for every S ⊆ V(G) with |S| 6 k− 1.

Remark: Even in a planar graph this ’regional’ connectedness of a vertex set X
can be arbitrarily large (in opposition to the usual global connectedness of a planar
graph, i.e. if X = V(G))!

Theorem 19.1. Let G be a planar graph, X ⊆ V(G), such that X is 4-connected in
G, and E ⊂ E(G[X]), such that |E| 6 2 and E is independent if |E| = 2.
Then there is a cycle of G containing X ∪ E.

Theorem 19.2. Let G be a graph, X ⊆ V(G), such that |X| > 7 and X is (|X| − 3)-
connected in G, and E ⊂ E(G[X]), such that |E| = 3 and E is independent.
Then there is a cycle of G containing X ∪ E.
(Not true if X is only (|X|− 4)-connected in G.)

Problem 19.1. Is there a positive constant c such that the following holds ?
A planar graph G with X ⊆ V(G), X is c-connected in G, E ⊂ E(G[X]), |E| = 3, and
E is independent, has a cycle containing X ∪ E.
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20 l vertices on a short cycle

(Jochen Harant)
Let G be a k−connected graph of order n = |V(G)|. Given l prescribed vertices,
1 6 l 6 k, find a short cycle containing these l vertices. By a theorem of Dirac
such a cycle always exists. Denote the length of this cycle in the worst case by
f(n,k, l).

Question 20.1.
f(n,k,k) =

2
k
n+ ck ?

Known:

1. f(n,k, 1) = 2
(k2)
n+ const

2. f(n,k, 2) = f(n,k, 3) = 2
k
n+ const

3. For l > k: If such a cycle exists, then f(n, 3, 4) > 3
4n+ const

21 Hamiltonian neighborhood graphs

(Martin Sonntag, Hanns-Martin Teichert)
The neighborhood graph N(G) for a simple graph G = (V ,E) is defined to be the
graph on the same vertex set V with two vertices adjacent if and only if there is in
G a path of length two between them. Neighborhood graphs, also referred to as
two-step graphs, have been the object of several studies in the last 25 years.

If G is hamiltonian then N(G) is hamiltonian for |V | odd. This is not true for |V |
even, for instance N(C2n) is disconnected. We can show that N(G) is always
hamiltonian if G is 1-hamiltonian connected and has a triangle, but we think there
are weaker conditions providing hamiltonicity of N(G).

Problem 21.1. Find sufficient conditions for G, such that N(G) is hamiltonian or
hamiltonian connected.
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22 Arbitrarily vertex-decomposable trees

(Mirko Horňák, Antoni Marczyk and Mariusz Woźniak)
A tree T is said to be arbitrarily vertex decomposable if for any sequence (t1, . . . , tk)
of positive integers adding up to |V(T)| there is a sequence (T1, . . . , Tk) of vertex-
disjoint subtrees of T such that |V(Ti)| = ti for i = 1, . . . ,k.
The notion of an arbitrarily vertex decomposable (avd for short) tree has been in-
troduced independently by Barth et al. in [1] and Horňák and Woźniak in [5].

It turned out that some classes are essential when analysing the property of a tree
“to be avd”. A star-like tree (a spider) is a tree homeomorphic to a star K1,q. Such a
tree is uniquely (up to isomorphism) determined by the non-decreasing sequence
(a1, . . . ,aq) of orders of its arms; it will be denoted by S(a1, . . . ,aq) and also called
a q-spider.
A caterpillar is a tree T having as a subgraph a path P such that T −P is an edgeless
graph.

The most general result concerns the best upper bound avdmax on the maximum
degree of an avd tree. In [5] it has been conjectured that avdmax 6 6 and conjectured
that avdmax = 4. Later it was shown that avdmax 6 5 ([7]) and avdmax 6 4 ([2]).
More precisely, the result of [2] reads as follows:

Theorem 22.1. If a tree T is avd, then ∆(T) 6 4. Moreover, if a tree T is avd, then
each vertex of T of degree four is adjacent to a leaf.

Let us mention that there are avd trees with maximum degree 4, for example
S(2, 2, 5, 7), hence, as conjectured, avdmax = 4.
There are only few known families of avd trees. The following theorem has been
proved independently in [1] and [5] (see also [4] for another, much more compli-
cated result of this type).

Theorem 22.2. A 3-spider S(2,a2,a3) is avd if and only if a2 and a3 are coprime.

For a1 > 2 let A2(a1) be the set of all a2’s such that a2 > a1 and there is a3 > a2
such that S(a1,a2,a3) is avd. Similarly, for a2 > a1 > 2 let A3(a1,a2) be the set
of all a3’s such that a3 > a2 and there is a4 > a3 such that S(a1,a2,a3,a4) is avd.
From Theorem 22.1 it is clear that if A3(a1,a2) , ∅, then a1 = 2.
We give below four “main" open questions concerning avd trees.

Question 22.1. Is A2(a1) , ∅ for all a1 > 2?

Question 22.2. Is A3(2,a2) , ∅ for all a2 > 2?
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Horňák and Woźniak ([6]) showed that A2(a1) , ∅ for all a1 ∈ {2, . . . , 28} and
A3(2,a2) , ∅ for all a2 ∈ {2, . . . , 23}. According to [3] there are infinitely many
a1’s such that A2(a1) , ∅.
It is easy to see that an avd caterpillar has at most one vertex of degree four. In
Figure 1 there is depicted an avd tree having two vertices of degree four.

24 72 36
An edge labelled l stands for a subpath with l vertices of degree 2.
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23 Which graph invariants are ARHP?

(Peter Mihók, Gabriel Semanis̆in)
Let ϕ(G) be a graph invariant. A graph G is called ϕ-partitionable if, for any pair
of positive integers (k1,k2) satisfying k1 + k2 > ϕ(G) − 1, there exists a partition
{V1,V2} of V(G) such that ϕ(G[V1]) 6 k1 and ϕ(G[V2]) 6 k2.
The next well-known results for the maximum degree ∆(G) provides an illustration
of such an invariant:

Theorem 23.1. (Lovász, 1966) Every graph G is ∆-partitionable.

The following problem have been formulated by I.Schiermeyer during the workshop
Hereditarnia 2003 (see [1]):

Question 23.1. Which other partition concepts/problems of this type do exist?

We have investigated a problem related to the previous one: Let P be a hereditary
property of graphs. Given a graph invariant ϕ, we define the associated invariant
of the property P in the following manner:

ϕ(P) = min{ϕ(F) : F ∈ F(P)}.

The motivation for the investigation of invariants related to hereditary graph prop-
erties comes from extremal and chromatic graph theory. The classical Erdős-Stone-
Simonovits formula provides a relationship between the maximum number of edges
in a P-maximal graph of order n and the invariant χ(P) - the chromatic number of
P (see e.g. [7]).

Let P1,P2, . . . ,Pn be any properties of graphs. A vertex (P1,P2, . . . ,Pn)-partition
of a graphG is a partition (V1,V2, . . . ,Vn) of V(G) such that for each i = 1, 2, . . . ,n
the induced subgraph G[Vi] has the property Pi. The property R = P1◦P2◦ . . . ◦Pn
is defined as the set of all graphs having a vertex (P1,P2, . . . ,Pn)-partition. If a
property R can be expressed as the product of at least two properties,then it is said
to be reducible; otherwise it is called irreducible (for more details see e.g. [3]).

A. Berger ([2]) proved that any reducible additive hereditary property of graphs has
infinitely many minimal forbidden graphs. But only very little is known about the
structure of F(P◦Q), even in the case when the structure of F(P) and F(Q) is known.
Moreover, A. Farrugia proved in [4], that recognizing whether a graph belongs to
a property P◦Q (i.e. recognizing whether it contains a graph from F(P◦Q) as a sub-
graph) is polynomial only in the simplest case : if the property P◦Q is the property
“to be bipartite”. Useful information on the structure of F(P◦Q) can be obtained
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by investigation of graph invariants associated with the property P◦Q.

We say that a graph invariant ϕ is additive with respect to reducible hereditary
properties (abbreviated by ARHP) if for any reducible property P◦Q the equality
ϕ(P◦Q) = ϕ(P) +ϕ(Q) is valid.

In [5] we proved that the subchromatic number ψ(G) = χ(G) − 1 is ARHP and we
stated the following problem:

Question 23.2. Which graph invariants are ARHP?

In [6] we presented a necessary and sufficient condition for a graph invariant to be
ARHP and we proved that amongst the others the degeneracy number and tree-
width are ARHP. Our investigation stimulates us to formulate the following more
specific problem:

Question 23.3. Is the choice number ch(G) ARHP?
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24 Vertex partitions and graph polynomials

(Peter Tittmann)
Let G = (V ,E) be an undirected finite graph with n vertices. A partition π ∈ P (V)

of the vertex set of G is called independent if all blocks of π are independent vertex
sets of G. Here P (V) denotes the set of all partitions of V . Let ai be the number
of independent partitions with i blocks of G. Then the chromatic polynomial of G
is

P (G, x) =
n∑
i=0

aix
i,

where xi = x (x− 1) · · · (x− i+ 1) denotes the falling factorial of x. A connected
partition π ∈ P (V) consists of blocks that induce connected subgraphs of G. The
set Pc (G) of all connected partitions of G forms a geometric sublattice of P (V)

([4]). Rota ([3]) showed that the chromatic polynomial can be obtained from
Pc (G):

P (G, x) =
∑

σ∈PC(G)

µ
(
0̂,σ
)
x|π|

Let qi (G) be the number of connected partitions of G = (V ,E) with exactly i
blocks and

Q (G, x) =
n∑
i=0

qi (G) x
i.

We callQ (G, x) the partition polynomial ofG. Two graphs with coinciding partition
polynomial are said to be Q-equivalent. We can derive from Q (G, x) the number
of edges, vertices, triangles, components, and the girth of G. For a vertex v ∈ V ,
we denote by N (v) the set of vertices that are adjacent to v in G. Let X ⊆ V

and let GX the graph obtained from G = (V ,E) by merging all vertices of X into
a single vertex. Possibly arising parallel edges are replaced by single edges. Then
the following equation is valid for each vertex v ∈ G:

Q (G, x) = xQ (G− v, x) +
∑

∅⊂W⊆N(v)

(−1)|W|+1
Q (GW, x)

Problem 24.1. The lattice Pc (G) of connected partitions determines the chromatic
polynomial uniquely. In which way does the partition polynomial (which may be
considered as rank generating function of Pc (G)) determine the chromatic polyno-
mial? Are there Q-equivalent graphs with different chromatic polynomials?

Problem 24.2. The chromatic polynomial and the adjoint polynomial ([2]) can be
computed in polynomial time for graphs of bounded treewidth. Can we find an
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algorithm that computes the partition polynomial of a graph of bounded treewidth
in polynomial time?
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25 Vertex-disjoint independent sets

(Anja Kohl)
While investigating the minimum order of k−chromatic Kr+1−free graphs the fol-
lowing question concerning Ramsey numbers arises:

Question 25.1. Let G be a graph with clique number at most r, independence
number 3, and order n = R(r+ 1, 3) + 1. Do there always exist two vertex-disjoint
independent sets with 3 vertices?

Known: If the order of G is n = R(r+ 1, 3) + 2, then the answer is ”yes”.
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26 Domination hypergraphs of tournaments

(Martin Sonntag, Hanns-Martin Teichert)
Let D = (V ,A) be a digraph. A subset V ′ ⊆ V is called a dominating set iff
∀x ∈ V \ V ′ ∃ y ∈ V ′ : (y, x) ∈ A. The domination graph D(D) has vertex set V
and its edges are the dominating sets of cardinality two (see for instance [1]). As
a natural generalization the domination hypergraph DH(D) also has vertex set V
and its edges are all minimal dominating sets V ′ with |V ′| > 1.
There are many interesting results on domination graphs of tournaments Tn, e.g.
in general D(Tn) is not connected (see for instance [2]).

Conjecture 26.1. The domination hypergraphDH(Tn) of a tournament Tn is always
connected.

The conjecture is true for n 6 9. We tested hundreds of bigger examples (up to
n = 23) by Mathematica routines and found no counterexample. It is easy to prove
that every nontrivial component of DH(Tn) contains at least three edges. A first
step to verify the conjecture could be the investigation of regular tournaments.
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27 Weight of graphs having a given property

(Stanislav Jendrol’)
Let B, C and D1+ denote bipartite graphs, connected graphs and graphs of mini-
mum degree at least 1. The following results have been proved in [1].

Theorem 27.1. If a∗ =
⌈
n−
√
n2−4m
2

⌉
, b∗ = dm

a∗
e and p∗ = min(a∗b∗ −m, 2), then

a∗ + b∗ − p∗ 6W(n,m,B) 6 a∗ + b∗ − p∗ + 1.

There are sufficient conditions for W(n,m,B) = a∗ + b∗ − p∗:

• p∗ ∈ {0, 1}

• b∗ > 2a∗ + 1

• n > 40 and m 6 b2n2−6n
9 c

A necessary condition for W(n,m,B) = a∗ + b∗ − p∗ + 1: there is l ∈ Z+ such
that m = (a∗ + l)(b∗ − l− 1).

Let k,m ′, r, c,d, e be integers defined by
(
n
2

)
−
(
k+1

2

)
< m 6

(
n
2

)
−
(
k
2

)
, m ′ :=(

n
2

)
−
(
k
2

)
−m, r :=

⌈
m ′

n−k

⌉
, c := 1 if either m ′ 6 bn−k2 c or m ′ = (n − k − 1)2,

c := 2 otherwise, d :=
⌊2m
n

⌋
, e := 0 if eitherm =

(
n
2

)
− 1 or d 6 n− 3 and 2m ≡ q

(mod n), 0 6 q 6 d− 1, and e := 1 otherwise.

Theorem 27.2. If 48 6 n− 1 6 m 6
(
n
2

)
−
(dn/2e

2

)
, k > n

2 and C ⊆ P ⊆ D1+, then
W(n,m,P) = 2n− k− r− c.

Theorem 27.3. If n > 15,
(
n
2

)
−
(dn/2e

2

)
+ 1 6 m 6

(
n
2

)
and C ⊆ P ⊆ D1+, then

W(n,m,P) = 2d+ e.
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28 Fractional graph properties

(Peter Mihók)
A graph property P is any nonempty isomorphism-closed class of simple (finite
or infinite) graphs. We will consider additive and hereditary graph properties i.e.
classes closed under disjoint union and subgraphs.
The fractional invariants were introduced in [2]. In 1999 we considered with
Zsolt Tuza and Margit Voigt (see [1]) the generalized fractional chromatic number
of graph. Here we stay some problems which are related to some generalized
invariants.
Let a,b be positive integers, a > b and P be an additive and hereditary graph
property. A fractional (circular) (P,a : b)-colouring of a graph G is a mapping φ
of V(G) to the set of all b-element subsets (of b consecutive elements modulo a)
of {0, 1, . . . ,a − 1} such that for each "‘colour"’ i, 0 6 i 6 a − 1 the subgraph G[i]
induced by the vertices where i ∈ φ(v) has the property P.
For a given property P the class of all graphs which possess a fractional and circular
(P,a : b)-colouring will be denoted by Pa:b and P[a:b].
For given different graph properties P,Q we say that P is a bound for Q if Q ⊂ P.
Let us consider the properties:

O = {G ∈ I : G is edgeless, i.e., E(G) = ∅},
Sk = {G ∈ I : the maximum degree ∆(G) 6 k},
Dk = {G ∈ I : G is k-degenerate, i.e., the minimum degree δ(H) 6 k,

for each H ⊆ G},
Tk = {G ∈ I : G contains no subgraph homeomorphic to Kk+2

or Kbk+3
2 c,d

k+3
2 e

},

It is known that the class T3 of planar graphs has the bounds O[4:1]; D[3:1]
1 ; (D1 ∩

S2)
[3:1]; D[5:2]

1 .
We propose to study best fractional and circular bounds for given graph properties
in the following sense:
We say that Pa:b (P[a:b]) is a best fractional (circular) P-bound for Q if Q ⊂ Pa:b

(P[a:b]) but Q 1 Pr:s (P[r:s]) for any (r : s) < (a : b) (as rational numbers).
Problem 28.1. Determine best fractional and circular bounds of planar graphs.
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29 Witnesses for H-reducibility of induced

hereditary graph properties

(Ewa Drgas-Burchardt)
For given graphs G1, . . . ,Gn and a graph H with V(H) = {v1, . . . , vn}, we will use
the symbol H[G1, . . . ,Gn] to denote the graph whose vertex set is the union of
V(G1), . . . ,V(Gn) and whose edge set consists of the union of E(G1), . . . ,E(Gn)
with the additional edge set {{x,y} : x ∈ V(Gi), y ∈ V(Gj), {vi, vj} ∈ E(H)}.
A graph property is any class of graphs that is closed under isomorphisms. A graph
property P is induced hereditary if it is closed under taking induced subgraphs.
The class of all induced hereditary graph properties will be denoted by L6.
Let H be any given graph on vertices v1, . . . , vn, n > 2. A graph property P is
H-reducible over L6 if there exist P1, . . . ,Pn ∈ L6 such that P consists of all graphs
whose vertex sets can be partitioned into n parts, possibly empty, satisfying:

1. for each i the graph induced by the ith non-empty partition part is in Pi, and

2. for each i and j with i , j there are no edges between the ith and jth parts if
vi and vj are non-adjacent vertices in H, and

3. there exists a graphG ∈ P such that each partition (V1, . . . ,Vn) ofG satisfying
the above two conditions has the property Vi , ∅ for all i ∈ [n].

If P ∈ L6 is H-reducible over L6 then the graph G satisfying the (3)th condition of
the definition is called the witness for H-reducibility of P.

Question 29.1. Let H be at least 2-vertex graph and let P be the property which is
H-reducible over L6.

1. Does there exist a witness G = H[G1, . . . ,Gn] for H-reducibility of P?

2. If the first question has negative answer in general, then characterize graphs H
for which such a witness exists.
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30 Can planar graphs be characterized in terms

of the vertex labellings they admit?

(Izak Broere, Erika Raubenheimer)
The basic idea of this contribution is stimulated by a characterization of outerplanar
graphs in terms of the vertex labellings they admit as described in [1]. An outer-
planar graph is a graph G which can be embedded in the plane in such a way that
all the vertices of G lie on the boundary of some region, usually chosen to be the
exterior region. A graph G of order p is called cyclic labelable in [1] if there exists
a labelling of the vertices of G with v1, v2, . . . , vp, called a cyclic labelling, such
that for every k > 3 every cycle of G of length k can be described in terms of its
labels as vi1, vi2, . . . , vik, vi1 with i1 < i2 < · · · < ik.

Theorem 30.1. ([1] and [2]) Let G be any graph. Then the following conditions on
G are equivalent:
(a) G is outerplanar
(b) G contains no subgraph homeomorphic from K4 or K2,3
(c) G admits a cyclic labelling.

In [1] a graph G is called near cyclic labelable if there exists a labelling of G such
that every cycle of G can be described in terms of its labels as vi1, vi2, . . . , vik, vi1
with i1 < i2 < · · · < ij−1 < ij+1 < · · · < ik for some j ∈ {1, 2, . . . , k}. It is then
shown that every near cyclic labelable graph is planar. However, not every planar
graph is near cyclic labelable - the unique 4-regular graph of order six is an example
which proves this remark. In order to pursue this question further we now relax
the conditions in the definition of near cyclic labelable further. For this we say, for
three positive integers p,q and r that p is flanked by q and r if q > p < r. We
now define a graph G to be n-defective cyclic labelable if there exists a labelling
of G such that every cycle of G can be described in terms of its labels in such a way
that at most n indices of the vertex labels are flanked by the indices of the labels
of the two vertices which are adjacent to them in the cycle. However, we then still
have

Theorem 30.2. For every natural number n there is a planar graph Gn of order
27n + 2 such that for every labelling of Gn there is a cycle which, in terms of this
labelling, has at least n+ 1 vertices of which the indices of the labels are flanked by
the indices of the labels of the two vertices which are adjacent to them in the cycle.

Hence, for every n, there is a planar graph which is not n-defective cyclic labelable.
The problem is therefore to find a type of labelling which characterizes the planarity
of a graph.
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31 Path-security number of a graph

(J. Katrenič, G. Semanišin)
Let G be a graph and k > 2 an arbitrary, fixed integer. Then S ⊂ V(G) is the k-path
security set of G if every path on k vertices in G contains a vertex from S. The
k-path security number ψk(G) of G is the cardinality of a minimum k-path security
set in G.
This graph invariant was recently introduced in [2], where the motivation for this
problem arises in ensuring data integrity communication in wireless sensor net-
works.

Theorem 31.1. For a graph G with n vertices andm edges Ψ3(G) 6 2n+m
6 .

Moreover, for an arbitrary rational number x, 1 6 x 6 2, one can construct
a (not-connected) graph G with n vertices and m edges such that m

n
= x and

Ψ3(G) > 2n+m
6 .

Problem 31.1. Let G be a connected graph with n vertices and m edges. Find a
tight upper bound for Ψk(n,m).

Note that Ψ2(G) corresponds to the size of the minimum vertex cover. Tight upper
bounds for Ψ3 are already known for trees, outerplanar, cubic graphs and hyper-
cubes.

For any fixed integer k > 2 the k-Path Security Problem is NP-hard ([1]). A trivial
algorithm to compute Ψk runs in time O(2nnO(1)).

Proposition 31.1. The value of Ψ3 can be computed in time O(1.749|V(G)|).

For trees there is a polynomial time algorithm. For outerplanar graphs, the value
of Ψ3 can be computed in polynomial time. A k-approximation algorithm for Ψk is
trivial.

Proposition 31.2. There is a polynomial 2.25-approximation algorithm for Ψ3.

Problem 31.2. Is there a polynomial time constant factor approximation for Ψk?
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